
Defending Against Internet Worms: A
Signature-Based Approach

Yong Tang Shigang Chen
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, FL 32611-6120, USA
{yt1, sgchen}@cise.ufl.edu

Abstract— With the capability of infecting hundreds of thou-
sands of hosts, worms represent a major threat to the Internet.
The defense against Internet worms is largely an open problem.
This paper attempts to answer two important questions. Can a
localized defense system detect new worms that were not seen
before and, moreover, capture the attack packets? How to identify
polymorphic worms from the normal background traffic? We
have two major contributions. The first contribution is the design
of a novel double-honeypot system, which is able to automatically
detect new worms and isolate the attack traffic. The second
contribution is the introduction of position-aware distribution
signature (PADS), which fits in the gap between the traditional
signatures and the anomaly-based systems. We propose two
algorithms based on Expectation-Maximization (EM) and Gibbs
Sampling for efficient computation of PADS from polymorphic
worm samples. The new signature is capable of handling certain
polymorphic worms. Our experiments show that the algorithms
accurately separate new variants of the MSBlaster worm from
the normal background traffic.

Key Words: System Design

I. I NTRODUCTION

An Internet worm is a self-propagated program that auto-
matically replicates itself to vulnerable systems and spreads
across the Internet. It represents a huge threat to the network
community [1], [2], [3], [4], [5], [6], [7]. While much recent
research concentrates on worm propagation models [8], [9],
[10], [11], [12], the defense against worm attacks is largely
an open problem due to the fact that worms are able to spread
substantially faster than human can respond. In most cases,
the defense against worm attacks can only be done reactively
after the damage has already happened.

Moore et al. studied the effectiveness of worm containment
technologies (address blacklistingand content filtering) and
concluded that such systems must react in a matter of minutes
and interdict nearly all Internet paths in order to be successful
[2]. Williamson proposed to modify the network stack so
that the rate of connection requests to distinct destinations
is bounded [13]. The main problem is that this approach
becomes effective only after the majority of all Internet hosts

is upgraded with the new network stack. For an individual
organization, although the local deployment may benefit the
Internet community, it does not provide immediate anti-worm
protection to its own hosts, whose security depends on the
rest of the Internet taking the same action. This gives little
incentive for the upgrade without an Internet-wide coordinated
effort. In our previous work, a distributed anti-worm archi-
tecture (DAW) has been proposed [3]. By tightly restricting
the connection-failure rates from worm-infected hosts while
allowing the normal hosts to make successful connections at
any rate, DAW is able to significantly slow down the worm’s
propagation in an ISP and minimize the negative impact on
the normal users.

Most known worms have very aggressive behaviors. They
attempt to infect the Internet in a short period of time. This
type of worms is actually easier to be detected becuase their
aggressiveness stands out from the background traffic. The
future worms may be modified to circumvent the rate-based
defense systems and purposely slow down the propagation rate
in order to compromise a vast number of systems over the long
run without being detected [2].

Intrusion detection has been intensively studied in the past
decade.Anomaly-basedsystems [4], [14], [15] profile the
statistical features of normal traffic. Any deviation from the
profile will be treated as suspicious. Although these systems
can detect previously unknown attacks, they have high false
positives when the normal activities are diverse and unpre-
dictable. On the other hand,misuse detectionsystems look for
particular, explicit indications of attacks such as the pattern of
malicious traffic payload. They can detect the known worms
but will fail on the new types.

Most deployed worm-detection systems aresignature-
based, which belongs to the misuse-detection category. They
look for specific byte sequences (calledattack signatures) that
are known to appear in the attack traffic. The signatures are
manually identified by human experts through careful analysis
of the byte sequence from captured attack traffic. A good
signature should be one that consistently shows up in attack
traffic but rarely appears in normal traffic.

The signature-based systems [16], [17] have advantage over
the anomaly-based systems due to their simplicity and the abil-
ity of operating online in real time. The problem is that they
can only detect known attacks with identified signatures that
are produced by experts. Automated signature generation for
new attacks is extremely difficult due to three reasons. First, in
order to create an attack signature, we must identify and isolate
attack traffic from legitimate traffic. Automatic identification
of new worms is critical, which is the foundation of other
defense measures. Second, the signature generation must be
general enough to capture all attack traffic of certain type
while at the mean time specific enough to avoid overlapping
with the content of normal traffic in order to reduce false-
positives. This problem has so far been handled in an ad-hoc
way based on human judgement. Third, the defense system
must be flexible enough to deal with the polymorphism in
the attack traffic. Otherwise, worms may be programmed to
deliberately modify themselves each time they replicate and
thus fool the defense system.

This paper attempts to address the above problems. We
design a novel double-honeypot system which is deployed in
a local network for automatic detection of worm attacks from
the Internet. The system is able to isolate the attack traffic
from the potentially huge amount of normal traffic on the
background. It not only allows us to trigger warnings but also
record the attack instances of an on-going worm epidemic.
We summarize the polymorphism techniques that a worm may
use to evade the detection by the current defense systems. We
then define theposition-aware distribution signature(PADS)
that is capable of detecting polymorphic worms of certain
types. The new signature is a collection of position-aware
byte frequency distributions, which is more flexible than the
traditional signatures of fixed strings and more precise than
the position-unaware statistical signatures. We describehow to
match a byte sequence against the “non-conventional” PADS.
Two algorithms based on Expectation-Maximization [18] and
Gibbs sampling [19] are proposed for efficient computation of
PADS from polymorphic worm samples. Experiments based
on variants of the MSBlaster worm are performed. The results
show that our signature-based defense system can accurately
separate new variants of the worm from the normal back-
ground traffic by using the PADS signature derived from the
past samples.

The rest of the paper is organized as follows. Section II
proposes a double-honeypot system that can detect worm
activities. Section III studies the worm polymorphism. Sec-
tion IV proposes a position-aware distribution signature,and
presents the algorithms for calculating such a signature and
using the signature to identify worm in a byte sequence.
Section V presents the experiment results. Section VI draws
the conclusion and discusses the future work.

II. D OUBLE-HONEYPOTSYSTEM

A. Motivation

The spread of a malicious worm is often an Internet-wide
event. The fundamental difficulty in detecting a previouslyun-
known worm is due to two reasons. First, the Internet consists
of a large number of autonomous systems that are managed
independently, which means a coordinated defense system
covering the whole Internet is extremely difficult to realize.
Second, it is hard to distinguish the worm activities from
the normal activities, especially during the initial spreading
phase. Although the worm activities become apparent after a
significant number of hosts are infected, it will be too late
at that time due to the exponential growth rate of a typical
worm [8], [9], [10], [11], [12]. In contrast to some existing
defense systems that require large-scale coordinated efforts, we
describe a double-honeypot system that allows an individual
autonomous system to detect the ongoing worm threat without
external assistance. Most importantly, the system is able to
detect new worms that are not seen before.

Before presenting the architecture of our double-honeypot
system, we give a brief introduction of honeypot. Developed
in recent years, honeypot is a monitored system on the Internet
serving the purpose of attracting and trapping attackers who
attempt to penetrate the protected servers on a network [20],
[21]. Honeypots fall into two categories. Ahigh-interaction
honeypot operates a real operating system and one or mul-
tiple applications. Alow-interaction honeypot simulates one
or multiple real systems. In general, any network activities
observed at honeypots are considered as suspicious and it is
possible to capture the latest intrusions based on the analysis
of these activities. However, the information provided by
honeypots is often mixed with normal activities as legitimate
users may access the honeypots by mistake. Hours or even
days are necessary for experts to manually scrutinize the
data logged by honeypots, which is insufficient against worm
attacks because a worm may infect the whole Internet in such
a period of time.

We propose a double-honeypot system to detect new worms
automatically. A key novelty of this system is the ability
to distinguish worm activities from normal activities without
the involvement of experts. Furthermore, it is a purely local
system. Its effectiveness does not require a wide deployment,
which is a great advantage over many existing defense systems
[2], [13].

The basic idea is motivated from the worm’s self-replication
characteristics. By its nature, an worm infected host will
try to find and infect other victims, which is how a worm
spreads itself. Therefore, outbound connections initiated from
the compromised hosts are a common characteristic shared by
all worms. Suppose we deliberately configure a honeypot to

2

Internet

Local Network

Gate Translater

Internal Translater

Inbound Honeypot

Outbound Honeypot

Worm

Fig. 1. Using double-honeypot detecting Internet worms

never initiate any outbound connections. Now if the honeypot
suddenly starts to make outbound connections, it only means
that the honeypot must be under foreign control. If the
honeypot can be compromised, it might try to compromise the
same systems on the Internet in the way it was compromised.
Therefore, the situation is either a real worm attack or can
be turned into a worm attack if the attacker behind the scene
chooses to do so. We shall treat the two equally as a worm
threat.

B. System Architecture

Figure 1 illustrates the double-honeypot system. It is com-
posed of two independent honeypot arrays, theinbound array
and theoutbound array, together with two address translators,
the gate translatorand the internal translator. A honeypot
array consists of one or multiple honeypots, which may run on
separate physical machines or on virtual machines simulated
by the same computer [21]. Each honeypot in the array runs a
server identical to a local server to be protected. A honeypot in
the inbound (outbound) array is called aninbound (outbound)
honeypot. Our goal is to attract a worm to compromise
an inbound honeypot before it compromises a local server.
When the compromised inbound honeypot attempts to attack
other machines by making outbound connections, its traffic is
redirected to an outbound honeypot, which captures the attack
traffic.

An inbound honeypot should be implemented as a high-
interaction honeypot that accepts connections from outside
world in order to be compromised by worms that may pose
a threat to a local server. An outbound honeypot should be
implemented as a low-interaction honeypot so that it can
remain uninfected when it records the worm traffic.

The gate translator is implemented at the edge router
between the local network and the Internet. It samples the
unwanted inbound connections, and redirects the sampled
connections to inbound honeypots that run the server software

the connections attempt to access (e.g., connections to ports
80/8080 are redirected to a honeypot running a web server).
There are several ways to determine which connections are
“unwanted”. The gate translator may be configured with a
list of unused addresses. Connections to those addresses are
deemed to be unwanted. It is very common nowadays for an
organization to expose only the addresses of its public servers.
If that is the case, the gate translator can be configured with
those publicly-accessible addresses. When a connection for
a specific service (e.g., to port 80 for web access) is not
made to one of the servers, it is unwanted and redirected to
an inbound honeypot. Suppose the size of the local address
space isN and there areh publicly-accessible servers on a
particular destination port. Typically,N >> h. For a worm
which randomly scans that port, the chance for it to hit an
inbound honeypot first isN−h

N
, and the chance for it to hit a

protected server first ish
N

. With a ratio of N−h
h

, it is almost
certain that the worm will compromise the inbound honeypot
before it does any damage to a real server within the network.

Once an inbound honeypot is compromised, it will attempt
to make outbound connections. The internal translator is
implemented at a router that separates the inbound array from
the rest of the network. It intercepts all outbound connections
from an inbound honeypot and redirects them to an outbound
honeypot of the same type, which will record and analyze the
traffic.

We give the following example to illustrate how the system
works. Suppose that the IP address space of a network is
128.10.10.0/24, with one public web serverY to be protected.
The server’s IP address is 128.10.10.1. No public web server
runs on any other address. Suppose an attacker outside the
network initiates a worm attack against systems of typeY .
The worm scans the IP address space for victims. It is highly
probable that a different IP address, e.g. 128.10.10.20, will
be attempted before 128.10.10.1. The gate controller redirects
the packets to an inbound honeypot of typeY , which is
subsequently infected. As the compromised honeypot partic-
ipates in spreading the worm, it will reveal itself by making
outbound connections and provide the attack traffic that will
be redirected to an outbound honeypot of the system.

We should emphasis that, the proposed double-honeypot
system is greatly different from a conventional honeypot. A
conventional system receives traffic from all kinds of sources,
including traffic from the normal users. It is a difficult and
tedious task to separate attack traffic from normal traffic,
especially for attacks that are not seen before. It is more than
often that, only after the damage of the new attacks is surfaced,
the experts rush to search the recorded data for the trace
of attack traffic. In our system, when an outbound honeypot
receives packets from an inbound honeypot, it knows for sure
that the packets are from a malicious source. The outbound

3

honeypot does not have to face the potentially huge amount of
normal background traffic that a conventional honeypot may
receive.

III. POLYMORPHISM OF INTERNET WORMS

The double-honeypot system provides a means to capture
the byte sequences of previous unknown Internet worms
without manual analysis from the experts. The captured byte
sequences can be used to generate worm signatures, and future
connections carrying them will be automatically blocked. This
is a great advantage over the current systems because the
defense can be carried out automatically before new worms
deal a significant damage to the network.

The attackers will try every possible way to extend the life
time of Internet worms. In order to evade the signature-based
system, a polymorphic worm appears differently each time
it replicates itself. This section discusses the polymorphism
of Internet worms, while the next section provides a solution
against some common polymorphism techniques.

There are many ways to make polymorphic worms. One
technique relies on self encryption with a variable key. It
encrypts the body of a worm, which erases both signatures and
statistical characteristics of the worm byte string. A copyof the
worm, the decryption routine, and the key are sent to a victim
machine, where the encrypted text is turned into a regular
worm program by the decryption routine. The program is
then executed to infect other victims and possibly damage the
local system. While different copies of a worm look different
if different keys are used, the encrypted text tends to follow
a uniform byte frequency distribution [22], which itself isa
statistical feature that can be captured by anomaly detection
based on its deviation from normal-traffic distributions [4],
[15]. Moreover, if the same decryption routine is always used,
the byte sequence in the decryption routine can serve as the
worm signature.

A more sophisticated method of polymorphism is to change
the decryption routine each time a copy of the worm is sent to
another victim host. This can be achieved by keeping several
decryption routines in a worm. When the worm tries to make
a copy, one routine is randomly selected and other routines
are encrypted together with the worm body. The number of
different decryption routines is limited by the total length of
the worm. For example, consider a buffer-overflow attack that
attempts to copy malicious data to an unprotected buffer. Over-
sized malicious data may cause severe memory corruption
outside of the buffer, leading to system crash and spoiling the
compromise. Given a limited number of decryption routines,
it is possible to identify all of them as attack signatures after
enough samples of the worm have been obtained.

Another polymorphism technique is called garbage-code
insertion. It inserts garbage instructions into the copiesof

a worm. For example, a number of nop (i.e., no operation)
instructions can be inserted into different places of the worm
body, thus making it more difficult to compare the byte
sequences of two instances of the same worm. However, from
the statistics point of view, the frequencies of the garbage
instructions in a worm can differ greatly from those in normal
traffic. If that is the case, anomaly-detection systems [4],
[15] can be used to detect the worm. Furthermore, some
garbage instructions such as nop can be easily identified
and removed. For better obfuscated garbage, techniques of
executable analysis [23] can be used to identify and remove
those instructions that will never be executed.

The instruction-substitution technique replaces one instruc-
tion sequence with a different but equivalent sequence. Unless
the substitution is done over the entire code without com-
promising the code integrity (which is a great challenge by
itself), it is likely that shorter signatures can be identified from
the stationary portion of the worm. The code-transposition
technique changes the order of the instructions with the help of
jumps. The excess jump instructions provide a statistical clue,
and executable-analysis techniques can help to remove the un-
necessary jump instructions. Finally, the register-reassignment
technique swaps the usage of the registers, which causes
extensive “minor” changes in the code sequence.

The space of polymorphism techniques is huge and still
growing. With the combinations of different techniques, a
cure-all solution is unlikely. The pragmatic strategy is toenrich
the pool of defense tools, with each being effective against
certain attacks. The current defense techniques fall in twomain
categories, misuse/signature matching and anomaly detection.
The former matches against known patterns in the attack
traffic. The latter matches against the statistical distributions
of the normal traffic. We propose a hybrid approach based
on a new type of signatures, consisting of position-aware byte
frequency distributions. Such signatures can tolerate extensive,
“local” changes as long as the “global” characteristics of the
signature remain. Good examples are polymorphism caused
by register reassignment and modest instruction substitution.
We do not claim that such signatures are suitable for all
attacks. On the other hand, it may work with executable-
analysis techniques to characterize certain statistical patterns
that appear after garbage instructions and excess jumps are
removed.

IV. A LGORITHMS FORSIGNATURE DETECTION

A. Background

Most deployed defense systems against Internet worms are
signature-based. They rely on the exact matching of the packet
payload with a database of fixed signatures. Though effective
in dealing with the known attacks, they fail to detect new or
variants of the old worms, especially the polymorphic worms

4

whose instances can be carefully crafted to circumvent the
signatures [23]. Moreover, manually identifying the signatures
may take days if not longer.

To address these problems, several anomaly-based systems
[4], [15] use thebyte frequency distribution(BFD) to identify
the existence of a worm. Their basic approach is to derive a
byte frequency distribution from the normal network traffic.
When a new incoming connection is established, the payload
of the packets is examined. The byte frequency distribution
of the connection is computed and compared with the byte
frequency distribution derived from the normal traffic. A large
deviation will be deemed as suspicious. The problem is that
an intelligent attacker could easily cheat the system by attach
the worm body to a lengthy normal, legitimate session. Since
the majority of the payload is from legitimate operations, its
byte frequency distribution will not vary much from the normal
traffic. As the worm byte sequence is diluted in normal traffic,
its statistic characteristics are smoothed out.

Both signature-based and anomaly-based systems have their
pros and cons. The signature-based systems work well against
the technique of attaching worm to normal traffic, but they
are weak against polymorphism. On the other hand, the
anomaly-based systems is able to handle polymorphism only
when the worm is largely separated from the background and
does not carry too much garbage instructions that distort the
distribution.

Our system inherits the positive aspects of both signature-
based and anomaly-based systems. It is based on a new defense
technique that is complementary to the existing ones. We
define a relaxed, inexact form of signatures that have the
flexibility against certain polymorphism. The new signature
is called theposition-aware distribution signature(PADS for
short). It includes a byte frequency distribution (insteadof a
fixed value) for each position in the signature “string”. The
idea is to focus on the generic pattern of the signature while
allowing some local variation.

Consider a polymorphic worm with register reassignment
(Section III). Because registers are used extensively in ex-
ecutables, swapping registers is effective against traditional
signatures. However, when a signature is expressed in position-
aware distributions, not only are the static elements in the
executable captured, but the set of likely values for the
variable elements are also captured. Hence, PADS allows a
more precise measurement of “matching”. A similar example
is instruction substitution, where the mutually replaceable
instructions (or sequences) can be represented by the position-
aware distributions.

The goal of our system is to use double honeypots to capture
the worm attack traffic, based on which PADS is derived and
used to detect inbound worm variants. It provides a quick and
automatic response that complements the existing approaches

b 0 1 2 ... 9 10
0x00 0.001 0.001 0.001 ... 0.500 0.100
0x01 0.001 0.001 0.001 ... 0.200 0.500
0x02 0.005 0.001 0.001 ... 0.001 0.100

...
0xfe 0.100 0.001 0.001 ... 0.001 0.001
0xff 0.001 0.700 0.700 ... 0.001 0.001

TABLE I

AN EXAMPLE OF A PADS SIGNATURE WITH WIDTH W = 10

involving human experts. Based on PADS, the defense system
will be able to identify the new variant of a worm at its first
occurrence, even if such a variant has not been captured by
the system previously.

B. Position-Aware Distribution Signature (PADS)

We first describe what is a PADS signature, then explain
how to match a byte sequence against a signature, and finally
motivate how to compute such a signature based on captured
worm sequences.

At each byte positionp of a PADS signature, the byte-
frequency distribution is a functionfp(b), which is the proba-
bility for b to appear at positionp, whereb ∈ [0..255], the set
of possible values for a byte.

∑
b∈[0..255] fp(b) = 1. We use

(f1, f2, ...fW) to characterize the byte-frequency distribution
of the worm, whereW is the width of the signature in terms of
the number of bytes. Letf0(b) be the byte frequency distribu-
tion of the legitimate traffic. The PADS signature is defined as
Θ = (f0, f1, f2, ...fW), which consists of anormal signature
f0 and ananomalous signature(f1, f2, ...fW). Table I gives
an example of a PADS signature with widthW = 10.

Consider a set of byte sequencesS = {S1, S2, ..., Sn},
whereSi, 1 ≤ i ≤ n, is the byte sequence of an incoming
connection. We want to decide whetherSi is a variant of the
worm by matching it against a signatureΘ. Let li be the length
of Si. Let Si,1, Si,2, ...,Si,li be the bytes ofSi at position1, 2,
..., li, respectively. Letseg(Si, ai) be theW -byte segment of
Si starting from positionai. The matching score ofseg(Si, ai)

with the anomalous signature is defined as

M(Θ, Si, ai) =
W∏

p=1

fp(Si,ai+p−1)

which is the probability forseg(Si, ai) to occur, given the dis-
tribution (f1, f2, ...fW) of the worm. Similarly, the matching
score ofseg(Si, ai) with the normal signature is defined as

M(Θ, Si, ai) =
W∏

p=1

f0(Si,ai+p−1)

We want to find a positionai that maximizesM(Θ, Si, ai)

and minimizesM(Θ, Si, ai). To quantify this goal, we com-
bine the above two scores in order to capture both the

5

“similarity” betweenseg(Si, a) and the anomalous signature,
and the “dissimilarity” betweenseg(Si, ai) and the normal
signature. For this purpose, we defineΛ(Θ, Si, ai) as the
matching score ofseg(Si, ai) with the PADS signature.

Λ(Θ, Si, ai) =
M(Θ, Si, ai)

M(Θ, Si, ai)
=

W∏

p=1

fp(Si,ai+p−1)

f0(Si,ai+p−1)
(1)

The matching score of the byte sequenceSi with the
signature is defined as the maximumΛ(Θ, Si, ai) among all
possible positionsai, that is,

li−W+1
max
ai=1

Λ(Θ, Si, ai)

Alternatively, we can use the logarithm ofΛ as the score,
which makes it easier to plot our experiment results. Our final
matching score ofSi with the PADS signatureΘ is defined
as

Ω(Θ, Si) =
li−W+1
max
ai=1

1

W
log(Λ(Θ, Si, ai))

=
li−W+1
max
ai=1

W∑

p=1

1

W
log

fp(Si, ai + p − 1)

f0(Si, ai + p − 1)

(2)

TheW -byte segment that maximizesΩ(Θ, Si) is called the
significant regionof Si, which is denoted asRi. The matching
score of the significant region is the matching score of the
whole byte sequence by definition.

For any incoming byte sequenceSi, if Ω(Θ, Si) is greater
than a threshold value, a warning about a (possibly variant)
worm attack is issued. Additional defense actions may be
carried out, e.g., rejecting the connection that carriesSi. The
threshold is typically set at0. From the definition ofΩ,
above zero means thatSi is closer to the anomalous signature
(f1, f2, ...fW); below zero means thatSi is closer to the
normal signaturef0.

Next we discuss how to calculateΘ based on the previously
collected instances of a worm. Suppose we have successfully
obtained a numbern of variants of a worm from the double-
honeypot system. Each variant is a byte sequence with a
variable length. It contains one copy of the worm, possibly
embedded in the background of a normal byte sequence. Now
let S = {S1, S2, ..., Sn} be the set of collected worm variants.
Our goal is to find a signature with which the matching scores
of the worm variants are maximized. We attempt to model it
as the classical “missing data problem” in statistics and then
apply the expectation-maximization algorithm (EM) to solve
it.

To begin with, we know neither the signature, which is the
underlying unknown parameter, nor the significant regions of
the variants, which are the missing data. Knowing one would
allow us to compute the other. We have just showed how
to compute the significant region of a byte sequence if the

signatureΘ is know. Next we describe how to compute the
signature if the significant regions of the variants are known.

First we compute the byte frequency distribution for each
byte position of the significant regions. At positionp ∈

[1...W], the maximum likelihood estimation of the frequency
fp(x), x ∈ [0...255], is the numberc(p, x) of times thatx
appears at positionp of the significant regions, divided byn.

fp(x) =
cp,x

n

One problem is thatfp(x) will be zero for those byte values
x that never appear at positionp of any significant region.
However, considering that our calculation is based on a limited
collection of the variants andfp(x) is only the maximum
likelihood estimation of the frequency, we are not absolutely
confident that the actual frequencies are zero unless we obtain
all variants of the worm. For better flexibility, we apply a
“pseudo-count” to the observed byte countcp,x, and the byte
frequencyfp(x) is estimated as

fp(x) =
cp,x + d

n + 256 · d
(3)

whered is a small predefined pseudo-count number.
We have established that the PADS signature and the

significant regions can lead to each other. We do not know
either of them, but we know that the significant regions are
those segments that can maximize the matching score with
the signature. This “missing data problem” can be solved
by an iterative algorithm, which first makes a guess on the
starting positions of the significant regions, computing the
signature, using the signature to compute the new starting
positions of the significant regions, and repeating the process
until convergence.

In the following, we show how to use the expectation-
maximization algorithm and the optimized Gibbs sampling
algorithm to compute the PADS signature from a collection of
worm variants captured by our double-honeypot system. We
want to stress that, though comparing the signature with the
payload of the incoming connections is online, the signature
itself is computed off-line. There is no real-time requirement.

C. Expectation-Maximization Algorithm

Expectation-Maximization (EM) [18] is an iterative proce-
dure that obtains the maximum-likelihood parameter estima-
tions. Given a setS of byte sequences, we lack the starting
positionsa1, a2, ..., an of the significant regions, which are
the missing data in our problem. The underlying parameterΘ

of our data set is also unknown. The EM algorithm iterates
between the expectation step and the maximization step after
the initialization.

The description of EM algorithm is given below.

6

Initialization . The starting positionsa1, a2, ..., an of the
significant regions for worm variantsS1, S2, ..., Sn are as-
signed randomly. They define the initial guess of the significant
regionsR1, R2, ..., Rn. The maximum likelihood estimate of
the signatureΘ is calculated based on the initial significant
regions.

Expectation. The new guess on the locations of the signifi-
cant regions is calculated based on the estimated signatureΘ.
In our algorithm, the new starting positionai of the significant
region is the position that the significant region has the best
match score with the signatureΘ. In other words, we seek

ai = arg max
ai

Λ(Θ, Si, ai) ∀i ∈ [1..n]

Maximization By formula (3), the new maximum likeli-
hood estimate of the signatureΘ is calculated based on the
current guess on the locations of the significant regions.

The algorithms terminates if the average matching scoreΩ

is within (1 + ε) of the previous iteration, whereε is a small
predefined percentage.

Starting with a large signature widthW , we run the above
algorithm to decide the signature as well as the significant
regions. If the minimum matching score of all significant
regions deviates greatly from the average score, we repeat the
algorithm with a smallerW . This process continues until we
reach a signature that matches well with the significant regions
of all collected worm variants.

D. Gibbs Sampling Algorithm

One main drawback of the EM algorithm is that it may
get struck in a local maxima. There is no guarantee that the
global maxima can be reached. In order to solve the problem,
many strategies have been proposed. One approach is to start
with multiple random parameter configurations and look for
the best among different results obtained. Another is to pre-
process the data with some other methods and choose “good”
initial configuration. In recent years, the simulated annealing
[24] approach attracted great attention. Simply speaking,the
approach allows certain random selection of the parameter
(with a small probability moving towards a worse direction),
which provides a chance to jump out of a local maxima. One
example of the simulated annealing is the Gibbs Sampling
Algorithm [19], which we will use to compute the PADS
signature below.

The algorithm is initialized by assigning random starting
positions for the significant regions of the worm variants.
Then one variant is selected randomly. This selected variant is
temporarily excluded fromS. The signature is calculated based
on the remaining variants. After that, the starting position
for the significant region of the selected variant is updated,
according to a probability distribution based on the matching

scores at different positions. The algorithm continues with
many iterations until a convergence criterion is met.

The description of the Gibbs sampling algorithm is given
below.

Initialization . The starting positionsa1, a2, ..., an of the
significant regions for worm variantsS1, S2, ..., Sn are
assigned randomly.

Predictive Update. One of then worm variants,Sx, is
randomly chosen. The signatureΘ is calculated based on the
other variants,S − Sx.

The algorithm terminates if the average matching score is
within (1 + ε) of the previous iteration, whereε is a small
predefined percentage.

Sampling. Every possible positionax ∈ [1..lx −W + 1] is
considered as a candidate for the next starting position forthe
significant region ofSx. The matching score for each candidate
position isΛ(Θ, Sx, ax) as defined in (1). The next starting
position for the significant region ofSx is randomly selected.
The probability that a positionax is chosen is proportional to
Λ(Θ, Sx, ax). That is,

Pr(ax) =
Λ(Θ, Sx, ax)

∑lx−W+1
ax=1 Λ(Θ, Sx, ax)

Go back to the predictive update step.

E. Signature with Multiple Separated Strings

Thus far the PADS signature is assumed to be a continuous
string (where each position in the string is associated not
with a byte value but with a byte frequency distribution). The
definition can be easily extended for a signature to contain
k(≥ 1) separated strings, which may have different lengths.
The significant region of a byte sequence also consists of
multiple separated segments, each having a starting position
and corresponding to a specific string in the signature. The
matching scoreΛ(Θ, Si, ai1, ai2, ...) should now be a function
of a set of starting positions, and the significant region is
defined by the set of starting positions that maximizes the
matching score. Because it remains that the signature and the
significant regions can be computed from each other, the EM
algorithm and the Gibbs Sampling algorithm can be easily
modified to compute a signature withk strings.

V. EXPERIMENTS

The effectiveness of our algorithms in detecting polymor-
phic worms is demonstrated by experiments. The malicious
payload of MS Blaster worm, which is 1.8KB long, is used
in the experiments. The worm exploits a vulnerability in
Microsoft’s DCOM RPC interface. Upon successful execution,
MS Blaster worm retrieves a copy of the file msblast.exe
from a previously infected host [25]. In the experiments, we
artificially generate the variants of the MS Blaster worm based
on some polymorphism techniques discussed in Section III.

7

S2

S1

S5

S4

S3

malicious payload segment
significant region

legitimate traffic payload

garbage payload
worm body

a1

a2

a3

a4

a5

Fig. 2. Variants of a polymorphic worm

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40

m
at

ch
in

g
sc

or
e

(O
m

eg
a)

number of per sequence iterations

Gibbs Run 1
Gibbs Run 2
Gibbs Run 3

EM Run 1
EM Run 2
EM Run 3

Fig. 3. Influence of initial configurations

Figure 2 illustrates the polymorphic worm design with five
variants, S1, S2, ..., and S5. Each variant consists of three
different types of regions. The black regions are segments
of the malicious payload in MS Blaster worm. Substitution
is performed on 10% of the malicious payload. Garbage
payloads, which are represented as the white regions with
solid lines, are inserted at different random locations in the
malicious payload. The default ratio of the malicious payload
to the garbage payload is 9:1.1 In addition to garbage payload,
each variant is embedded in the legitimate traffic of a normal
session, represented by the white regions with dotted lines.
The length of the normal traffic carried by a worm variant
is between 2KB to 20KB. The significant regions of these
variants start at a1, a2, ..., and a5, respectively.

In the first experiment,100 variants of MS Blaster worm
are generated and they are used as worm samples for signature
generation. EM and Gibbs each run three times with different
initial configurations. Specifically, the initial startingpoints of
significant regions are randomly selected each time. Figure3
shows the quality of the PADS signature obtained by EM or

1This ratio is not shown proportionally in Figure 2 for betterillustration.

Gibbs sampling algorithm after a certain number of iterative
cycles. According to the algorithm description in Section IV,
a run of either algorithm consists of iteration cycles (Expec-
tation/Maximization steps for EM and Update/Sampling steps
for Gibbs). During each iterative cycle, EM recalculates the
significant regions of all variants, while Gibbs only modifies
the significant region of one randomly selected variant. To
make a fair comparison, we let thex axis be the number ofper
sequence iterations, which is defined as the average number of
the iterations each sequence has undergone. They axis is the
average matching score of the 100 variants with the signature
obtained so far. The matching scoreΩ is defined by (2). From
the figure, the best matching score is around 7.5, which is
likely to be the global maxima. EM tends to settle down at a
local maxima, depending on the initial configuration. Gibbsis
likely to find the global maxima but it does not stabilize even
when it reaches the global maxima due to the randomness
nature in its selection of starting points of significant regions.

Figure 4 and Figure 5 show the average matching score with
respect to the signature width and the average length of the
worm variants, respectively. In Figure 5, because the worm
code has a fixed length, we increase the length of a variant
by increasing the normal traffic it carries. In each experiment,
we generate200 variants of MS Blaster worm. We use100

of them as samples for signature generation. The rest100

variants are mixed with100 normal-traffic byte sequences to
test the quality of the signature. The left-hand plots in Figure
4 and Figure 5 show the average matching scores of sample
variants after EM and Gibbs sampling algorithms converge
to a final signature. The right-hand figures show the average
matching scores of the testing worm/normal traffic sequences.
The scores for worm traffic are always above zero and the
scores for normal traffic are always below zero. Therefore,
with a threshold of0, worm variants are distinctively saperated
from normal traffic. In our experiments, the generated PADS
signature was always able to identify new variants of the worm
without false positives.

Figure 4 also indicates that increasing the signature width
will decrease the average matching score of worm variants.
The reason is that a longer signature means a larger significant
region, which increases the chance for the significant region
to include garbage payload or normal traffic (that a worm
variant carries), which in turn decreases the matching score.
Figure 5 shows that increasing the length of the normal traffic
carried by a worm variant, which has been widely used by
some polymorphic worms to elude the anomaly-based systems,
provides no help to avoid detection by our system. The reason
is that our system identifies a significant region and only uses
the significant region for signature generation.

For the purpose of comparison, we also perform experi-
ments with some existing methods. Figure 6 shows the exper-

8

0

2

4

6

8

10

10 100 1000

m
at

ch
in

g
sc

or
e

(O
m

eg
a)

signature width W

Gibbs
EM

-5

0

5

10

15

10 100 1000

m
at

ch
in

g
sc

or
e

(O
m

eg
a)

signature width W

Normal Traffic (Gibbs)
Normal Traffic (EM)

Worm Traffic (Gibbs)
Worm Traffic (EM)

Threshold

Fig. 4. Influence of different widths of the signatures

0

2

4

6

8

10

0 5000 10000 15000 20000 25000

m
at

ch
in

g
sc

or
e

(O
m

eg
a)

average length of worm variants

Gibbs
EM

-5

0

5

10

15

0 5000 10000 15000 20000 25000

m
at

ch
in

g
sc

or
e

(O
m

eg
a)

average length of worm variants

Normal Traffic (Gibbs)
Normal Traffic (EM)

Worm Traffic (Gibbs)
Worm Traffic (EM)

Threshold

Fig. 5. Influence of different lengths of the sample variants

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100

le
ng

th
 o

f s
ig

na
tu

re

number of sample variants

longest common substring method

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

fa
ls

e
ra

tio

number of sample variants

false-positive ratio
false-negative ratio

Fig. 6. The performance of signature-based system using longest common substrings.

9

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 50 100 150 200 250

by
te

 fe
qu

en
cy

byte value

normal

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 50 100 150 200 250

by
te

 fe
qu

en
cy

byte value

worm

Fig. 7. Byte frequency distributions of normal traffic (left-hand plot) and worm traffic (right-hand plot)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 50 100 150 200 250

by
te

 fe
qu

en
cy

byte value

1:1

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 50 100 150 200 250

by
te

 fe
qu

en
cy

byte value

1:9

Fig. 8. Byte frequency distributions of worm variants. Left-hand plot: malicious and normal payloads carried by a worm variant have equal length. Right-hand
plot: normal payload carried by a worm variant is 9 times of malicious payload.

imental results based on thelongest common substringmethod
[20], which first identifies the longest common substring
among the sample worm variants and then uses the substring
as a signature to match against the test variants. Based on the
left-hand plot, as the number of sample variants increase, the
length of the longest common substring decreases. A shorter
signature increases the chance for it to appear in normal traffic.
Consequently, the false negative ratio decreases, but the false
positive ratio increases dramatically (the right-hand plot). On
the contrary, without the requirement of exact matching, a
PADS signature is able to retain much more (particularly
statistical) characteristics of a polymorphic worm.

Now consider theposition-unawarebyte frequency distri-
butions that are used in some current systems. The left-hand
plot of Figure 7 shows the position-unaware byte frequency
distribution of 100 normal traffic sequences (from 100 normal
sessions) and the right-hand plot shows the byte frequency

distribution of MS blaster payload. These two distributions
are very different, which seems provide a way to detect the
worm. However, if we create a worm variant by embedding the
worm payload in normal traffic, the combined byte frequency
distribution can be made very similar to that of normal traffic.
Figure 8 shows the byte frequency distributions of two worm
variants whose normal traffic payloads are 1 and 9 times
of malicious payload, respectively. The right-hand plot is
very similar to the left-hand plot of Figure 7. Therefore,
using byte frequency distributions alone cannot handle worm
variants. The proposedposition-awaredistribution signature
works better against polymorphic worms.

VI. CONCLUSION AND FUTURE WORK

In this paper, we provide a new defense system to detect
the attacks of malicious Internet worms. The key idea is to
capture the samples of the Internet worm using proposed
double-honeypot system before the protected server has been

10

compromised. Those IP addresses that are unreachable from
the outside are used to attract and trap the attackers. The
system is especially useful in large networks where large
number of unreachable IP addresses exist.

Our system is able to defend against polymorphic worms.
After collecting a number of variants of polymorphic worm,
the system uses iterative algorithms to find the PADS signature
of the worm, which is used to detect future worm attacks
even if new variants have not been captured before. In our
experiment, a100% accuracy has been achieved to detect the
variants of MSBlaster worm which means all malicious traffic
can be detected and all legitimate traffic can pass through the
system with no false positives.

The system is completely automatic. It requires no involve-
ment of human experts, which is typically the drawback of
the regular signature-based system. The system also tolerates
some modifications of the worm where both signature- and
anomaly-based systems may fail.

In our future work, we plan to evaluate the system in a
live environment. We also need some further improvement of
our proposed iterative algorithms. For example, what should
we do to distinguish several different worms from a mixture
collection of the variants of these worms. The research in these
directions will provide a more robust and reliable system to
defend against future worm attacks.

REFERENCES

[1] S. Staniford, V. Paxson, and N. Weaver, “How to 0wn the Internet
in Your Spare Time,” inProceedings of the 11th USENIX Security
Symposium (Security ’2002), San Francisco, California, USA, Aug.
2002.

[2] D. Moore, C. Shannon, G. M. Voelker, and S. Savage, “Internet
Quarantine: Requirements for Containing Self-PropagatingCode,” in
Proceedings of the22nd Annual Joint Conference of the IEEE Com-
puter and Communications Societies (INFOCOM ’2003), San Francisco,
California, USA, Apr. 2003.

[3] S. Chen and Y. Tang, “Slowing Down Internet Worms ,” inProceeding
of the 24

th International Conference on Distributed Computing and
Systems (ICDCS ’2004),, Tokyo,Japan, Mar. 2004.

[4] C. Kruegel and G. Vigna, “Anomaly Detection of Web-based Attacks,”
in Proceedings of the10th ACM Conference on Computer and Com-
munication Security (CCS’2003). Washington D.C., USA: ACM Press,
Oct. 2003, pp. 251–261.

[5] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,and
N. Weaver, “Inside the Slammer Worm,”IEEE Magazine of Security
and Privacy, pp. 33–39, July 2003.

[6] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-Overflow Attacks,” inProceedings
of the7

th USENIX Security Conference (Security ’1998), San Antonio,
Texas, USA, Jan. 1998, pp. 63–78.

[7] M. Eichin and J. Rochlis, “With Microscope and Tweezers:An Analysis
of the Internet Virus of November 1988,” inProceedings of the 1989
IEEE Symposium on Security and Privacy, Oakland, California, USA,
May 1989, pp. 326–344.

[8] C. C. Zou, W. Gong, and D. Towsley, “Code Red Worm Propagation
Modeling and Analysis,” inProceedings of the9th ACM Conference
on Computer and Communications Security (CCS ’2002). Washington,
DC, USA: ACM Press, Nov. 2002, pp. 138–147.

[9] C. C. Zou, L. Gao, W. Gong, and D. Towsley, “Monitoring and
Early Warning for Internet Worms,” inProceedings of the10th ACM
Conference on Computer and Communication Security (CCS ’2003).
Washington D.C., USA: ACM Press, Oct. 2003, pp. 190–199.

[10] Z. Chen, L. Gao, and K. Kwiat, “Modeling the Spread of Active
Worms,” in Proceedings of the22nd Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM’ 2003), San
Francisco, California, USA, Mar. 2003, pp. 1890–1900.

[11] David Moore and Colleen Shannon and K Claffy, “Code-Red: A Case
Study on the Spread and Victims of an Internet Worm,” inProceedings
of the 2

nd Internet Measurement Workshop (IMW ’2002), Marseille,
France, Nov. 2002, pp. 273–284.

[12] J. O. Kephart and S. R. White, “Directed-Graph Epidemiological Models
of Computer Viruses,” inProceedings of the 1991 IEEE Symposium on
Security and Privacy, Oakland, California, USA, May 1991, pp. 343–
361.

[13] M. M. Williamson, “Throttling Viruses: Restricting Propagation to
Defeat Malicious Mobile Code,” inProceeding of the18th Annual
Computer Security Applications Conference (ACSAC ’2002), Las Vegas,
Neveda, USA, Oct. 2003.

[14] H. Javitz and A. Valdes, “The NIDES Statistical Component Description
and Justification,” Computer Science Laboratory, SRI International,
Menlo Park, California, USA, Tech. Rep., 1994.

[15] K. Wang and S. J. Stolfo, “Anomalous Payload-based Network Intrusion
Detection,” in 7

th International Symposium on Recent Advances in
Intrusion Detection (RAID ’2004), Sophia Antipolis, French Riviera,
France, Sept. 2004.

[16] K. Ilgun, R. Kemmerer, and P. Porras, “State Transition Analysis: A
Rule-based Intrusion Detection Approach,”IEEE Trans. Software Eng.,
vol. 2, pp. 181–199, 1995.

[17] U. Lindqvist and P. Porras, “Detecting Computer and Network Misuse
Through the Production-Based Expert System Toolset (P-BEST),” in
Proceedings of the 1999 Symposium on Security and Privacy, Oakland,
California, USA, May 1999.

[18] C. E. Lawrence and A. A. Reilly, “An Expectation Maximization (EM)
Algorithm for the Identification and Characterization of Common Sites
in Unaligned Biopolymer Sequences,”PROTEINS:Structure, Function
and Genetics, vol. 7, pp. 41–51, 1990.

[19] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F.
Neuwald, and J. C. Wootton, “Detecting Subtle Sequence Signals: A
Gibbs Sampling Strategy for Multiple Alignment,”Science, vol. 262,
pp. 208–214, Oct. 1993.

[20] C. Kreibich and J. Crowcroft, “Honeycomb Creating Intrusion Detection
Signatures Using Honeypots,” in2nd Workshop on Hot Topics in
Networks (HotNets-II), Cambridge, Massachusetts, USA, Nov. 2003.

[21] N. Provos, “A virtual Honeypot Framework,” Center for Information
Technology Integration, University of Michigan, Ann Arbor, Michigan,
USA, Tech. Rep. CITI Technical Report 03-1, Oct. 2003.

[22] C. Kaufman, R. Perlman, and M. Speciner,Network Security: Private
Communication in a Public World. Upper Saddle River, NJ, USA:
Prentice Hall, Inc., 2002.

[23] M. Christodorescu and S. Jha, “Static Analysis of Executables to
Detect Malicious Patterns,” inProceedings of the 12th USENIX Security
Symposium (Security ’2003), Washington D.C., USA, Aug. 2003.

[24] S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distribution,
and the Bayesian Restoration of Images,”IEEE Trans. Pattern Anal.
Machine Intell., vol. 6, pp. 721–741, 1984.

[25] CERT/CC, “CERT Advisory CA-2003-20 - W32/Blaster worm,”2003.
[Online]. Available: http://www.cert.org/advisories/CA-2003-20.html

11

